Effect of interface phase transformations on diffusion and segregation in high-angle grain boundaries.
نویسندگان
چکیده
Recent experimental measurements of Ag impurity diffusion in the Σ5(310) grain boundary (GB) in Cu revealed an unusual non-Arrhenius behavior suggestive of a possible structural transformation Divinski et al., [Phys. Rev. B 85, 144104 (2012)]. On the other hand, atomistic computer simulations have recently discovered phase transformations in high-angle GBs in metals Frolov et al., [Nat. Commun. 4, 1899 (2013)]. In this Letter we report on atomistic simulations of Ag diffusion and segregation in two different structural phases of the Cu Σ5(310) GB which transform to each other with temperature. The obtained excellent agreement with the experimental data validates the hypothesis that the unusual diffusion behavior seen in the experiment was caused by a phase transformation. The simulations also predict that the low-temperature GB phase exhibits a monolayer segregation pattern while the high-temperature phase features a bilayer segregation. Together, the simulations and experiment provide the first convincing evidence for the existence of structural phase transformations in high-angle metallic GBs and demonstrate the possibility of their detection by GB diffusion measurements and atomistic simulations.
منابع مشابه
Effect of Pre-existing Nano Sized Precipitates on Microstructure and Mechanical Property of Al-0.2wt% Sc Highly Deformed by ARB Process
The effect of pre-existing nano sized precipitates on the mechanisms and rate of grain refinement has been investigated during the severe plastic deformation. A binary Al–0.2Sc alloy, containing coherent Al3Sc particles, of 3.62 nm in diameter has been deformed by accumulative roll bonding up to 10 cycles. The resulting deformed structures were quantitatively analyzed using electron backscatter...
متن کاملGrain Boundary Specific Segregation in Nanocrystalline Fe(Cr)
A cross-correlative precession electron diffraction - atom probe tomography investigation of Cr segregation in a Fe(Cr) nanocrystalline alloy was undertaken. Solute segregation was found to be dependent on grain boundary type. The results of which were compared to a hybrid Molecular Dynamics and Monte Carlo simulation that predicted the segregation for special character, low angle, and high ang...
متن کاملEffect of grain boundary character on segregation-induced structural transitions
Segregation-induced structural transitions in metallic grain boundaries are studied with hybrid atomistic Monte Carlo/molecular dynamics simulations using Cu-Zr as a model system, with a specific emphasis on understanding the effect of grain boundary character. With increasing global composition, the six grain boundary types chosen for this paper first form ordered complexions, with the local s...
متن کاملAtomic-scale quantification of grain boundary segregation in nanocrystalline material.
Grain boundary segregation leads to nanoscale chemical variations that can alter a material's performance by orders of magnitude (e.g., embrittlement). To understand this phenomenon, a large number of grain boundaries must be characterized in terms of both their five crystallographic interface parameters and their atomic-scale chemical composition. We demonstrate how this can be achieved using ...
متن کاملSegregation and Phase Transformations at Interfaces
Grain boundary and surface segregation of Bi in Cu were investigated under identical conditions. Cu bicrystals containing deliberately made internal cavities at the interfaces were doped with Bi, annealed at different temperatures, and broken in an Auger microprobe. The segregation level at the free surfaces was found to be higher than that at grain boundaries. Grain-boundary and surface segreg...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 110 25 شماره
صفحات -
تاریخ انتشار 2013